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Abstract-We evaluate the effect of the nonlinear stress-strain relationship on elastic stability, free
vibrations, and bending of optical glass fibers, The analysis is carried out under an assumption that
this relationship, obtained for the case of uniaxial tension (Mallinder and Proctor, 1964, Phys,
Chem, Glasses 5, 91-103; Krause et al., 1979, Phys. Chem. Glasses 20, 135-139; Glaesemann et
ai" 1988, 11th Opt, Fiber Comm, Con! 26), is also valid in the case ofcompression, and is applicable
to bending deformations as well. We examine low temperature microbending of infinitely long dual
coated fibers, elastic stability of short bare fibers, thermally induced stresses and strains in a
lightwave coupler, free vibrations of fibers subjected to tension, and bending deformations of fibers
experiencing large deflections. We conclude that the nonlinear stress-strain relationship in silica
materials can have a significant effect on the mechanical behavior of optical fibers.

INTRODUCTION

It has been found (Mallinder and Proctor, 1964; Krause et al., 1979; Glaesemann et al.,
1988) that the stress-strain relationship in glass optical fibers subjected to uniaxial tension
is nonlinear and, in the region of strains not exceeding 5%, can be described by the equation

(1)

where (J is the stress, 8 is the strain, Eo is Young's modulus of the material in the region of
very small strains, and IX is the parameter ofnonlinearity. For most silica materials employed
in fiber optics one can assume Eo = 72 GPa, and IX = 6. The purpose of the analysis which
follows is to determine whether the above nonlinear stress-strain relationship can have an
appreciable effect on the elastic stability, thermally induced stresses, free vibrations, and
bending of optical fibers and lightwave couplers. Accordingly, we evaluate the critical
(buckling) stress, thermal stresses and strains, natural frequencies, and maximum stresses
in glass fibers, experiencing compression, thermally induced tension, lateral vibrations, and
excessive bending, respectively. The analysis is carried out under an assumption that the
relationship (1) holds not only for tensile strains, but for compressive strains as well, i.e.
can be simply extended into the region of compressive strains as follows:

(2)

ANALYSIS

Elastic stability
Elastic instability (buckling) of optical fibers can adversely affect both their long-term

reliability and added transmission losses (Gloge, 1972; Gardner, 1975; Katsuyama et al.,
1980; Suhir, 1988a-e). In this section we assess the effect of the stress-strain relationship
(2) on the critical (buckling) stress in infinitely long dual-coated fibers, and in very short
bare fibers.

Microbending of dual-coated fibers. The critical force, causing low temperature micro
bending of dual-coated fibers with compliant (thick and low modulus) primary coatings,
can be determined by the formula (Suhir, 1988a) :
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(3)

Here '0 is the glass fiber radius, K is the spring constant of the coating system (Suhir,
1988c), and E is Young's modulus of the silica material. The formula (3) can be written as

(1e = J~KE, (4)

where

Te (5)(1e =-2
n,o

is the critical stress. In the formula (4), Young's modulus E is strain (stress) dependent
and is therefore a function of the stress (1. This dependency can be found from (2) by
differentiation:

d(1
E = ds = E o(1-(Xs).

Then the formula (4) can be written as:

where

(10 = J~KEo

(6)

(7)

(8)

is the "nominal" critical stress, determined on the basis of "linear" (low strain) Young's
modulus Eo, and the factor

(9)

considers the effect of the nonlinear stress-strain relationship. Putting in (2) (1 = (1e, solving
the obtained equation for the strain 8, and substituting this solution into (9), we obtain the
following equation for the factor f/ I :

(10)

where

(11)

The numerical solution to eqn (10) is plotted for (X =6 in Fig. 1.
The calculations carried out in Suhir (1988b) for a fiber with a dual acrylate coating

system resulted in a spring constant value equal to K = 3046 MPa. With Eo = 72 GPa, we
obtain: (10 = 8339 MPa = (1o/Eo = 0.1158, and '11 = 0.595. Hence, consideration of the
nonlinear stress-strain relationship resulted in a significant reduction in the critical stress.
It should be pointed out, however, that the strain corresponding to the calculated stress (10

is as high as 7.9%, that is above the 5% value, for which the experimental relationship (1)
was obtained. Therefore the actual magnitude of the factor" I can be somewhat higher than
the calculated value.



Behavior of optical glass fibers

0.9

0.8
UI <>t:l t:l

II
~

0.7

0.6

°0
E;;-

Fig. I. Effect of the nonlinear stress--strain relationship on the critical stress in coated (" ,) and bare
("2) fibers.
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For a silicone/nylon coating system, the calculated spring constant is only K = 90
MPa. Then 0'0 = 1433 MPa, O'o/Eo = 0.0198, and '11 = 0.932. In this case, because ofa very
compliant coating, the effect of the nonlinear stress-strain relationship is substantially
smaller. Since the corresponding strain is only 1.8%, the obtained result is thought to be
accurate enough.

Buckling of a short bare fiber. Examine now a short bare optical fiber clamped at its
ends and subjected to compressive axial loading. Such a situation can occur, for instance,
in a fiber located in a termination fixture (Suhir, 1988c). We proceed from the following
Euler formula for the critical force [see, for instance, Timoshenko and Gere (1961) and
Suhir (1991)] :

(12)

Here / is the length of the fiber, I = (n/4)r~ is the moment of inertia of the fiber cross
sectional area, J1. is a factor depending on the boundary conditions at the supports, and E
is Young's modulus of the material. The formula (12) can be written as

(
nro)2

O'c = 2J1./ E, (13)

where the critical stress O'c is related to the force Tc by (5). Using the relationship (6) for
Young's modulus, we obtain the formula (13) in the form (7), where the "nominal" (linear)
stress 0' 0 is expressed as

(14)

and the factor
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'12 = l-cxe (15)

considers the effect of the nonlinear stress-strain relationship on the critical stress ae •

Solving eqn (2) for the strain e, and substituting the obtained expression in (15), we obtain:

(16)

where the parameter Ii is expressed by (11). The factor '12 is plotted in Fig. 1 as a function
of the ratio of the "nominal" critical stress (calculated without considering nonlinear stress
strain relationship) to the "nominal" (low strain) Young's modulus.

If, for instance, a 2 mm long fiber is clamped at its ends (f.l = 0.5), then ao = 696 MPa,
ao/Eo= 0.0096, Ii = 0.0578, and '12 = 0.9439. For a 1 mm long fiber, the calculated factor
'12 is substantially smaller: '12 = 0.7951. Thus, for very short fibers, the nonlinear stress
strain relationship can have a significant effect on the critical stress and should be accounted
for.

Stresses and strains in a lightwave coupler subjected to tension
In fused biconical taper (FBT) couplers, the cores of the fibers are positioned very

close to each other, so that the two fundamental modes become coupled through their
evanescent fields (Sheem and Giallorenzi, 1979; Sheem and Cole, 1979; Bergh et al., 1980;
Villaruel and Moeller, 1981; Bures et al., 1983; Bilodeau et al., 1987). In order to bring
the cores of the fibers in close proximity, the cladding in the midportion of the coupler has
to be made very thin (Fig. 2). At the same time, the coupler must be sufficiently strong,
both on a short and a long-time scale, and must be able to withstand appreciable axial
deformations. These are usually caused by its thermal contraction mismatch with the
substrate, but could be applied also deliberately to improve the dynamic stability of the
coupler (by increasing is natural frequencies of vibration).

In this section we evaluate the stresses and strains in a FBT coupler subjected to tensile
deformations, with consideration of its nonprismaticity. We assume that the actual coupler
geometry can be approximated by two circular conical parts connected by a circular
cylindrical midportion (as shown in Fig. 2 in broken lines). Such an approximation is
thought to be adequate, as long as the radii re and rf are chosen in such a way that the areas
of the corresponding circles are equal to the actual cross-sectional areas.

The stress a(x) in any cross-section x of the coupler can be evaluated as

P rl
a(x) = -----r-() = af ----z--()'nr x r x

(17)

where rl is the radius of the fused midportion, af = P/nrl is the stress experienced by this
portion, P is the applied tensile force, and the radius r(x) of the coupler's cross-section is
changing, in accordance with the assumption, as follows:

I
I
I

-----..........
~M

Fig. 2. Fused biconical taper (FBT) lightwave coupler.
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(18)

Here I, Ie and Ir are the total length of the coupler, the length of one of its conical parts,
and the length of its fused midportion, respectively, re is the larger radius of the conical
part, and rr is the radius of the fused midportion. The origin of the coordinate X is at the
left end of the coupler. From (I) and (17) we obtain:

where the parameter

Mr F;I;p= 2a-
E

= 2a-
E

2
o 1t orr

(19)

(20)

considers the effect of the magnitude of the applied force and the nonlinear behavior of the
material on the strain.

The total elongation M of the coupler is

(21)

The integral in the obtained expression can be written as

(22)

where the factors

(23)

and

(24)

consider the effects of the magnitude of the applied force and the material's nonlinearity
on the elongations of the conical and the fused portions, respectively. The factor fc can be
evaluated, taking into account the first relationship in (18), as follows:

where p = rrlre is the radii ratio.
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Table I. Calculated tensile free in a lightwave coupler

p 0 0.02 0.04 0.06 0.1 0.2 0.4 0.5 0.6 0.7 0.8

fr 1 1.0002 1.0008 1.0018 1.0050 1.0198 1.0770 I.ll80 I.l662 1.2207 1.2806
fc 1 ooסס1.0 oo6סס.1 1.00013 1.00036 1.00296 1.00631 1.00979 1.01397 1.01886 1.02429
£0 = (1';Eo, % 0 0.0033 0.0133 0.0300 0.0833 0.3333 1.3333 2.0833 3.0000 4.0833 5.3333
e, = (f,-I)la, % 0 0.0033 0.0133 0.0300 0.0833 0.3300 1.2833 1.9667 2.7700 3.6783 4.6767
!!lll, % 0 0.0010 0.00466 0.00985 0.0291 0.1332 0.4571 0.7019 0.9908 1.3193 1.6810
P,gf 0 0.0773 0.3093 0.6959 1.933 0.732 30.93 48.33 69.59 94.72 123.72

(0.0654) (0.3047) (0.6440) (1.903) (8.709) (29.89) (45.89) (64.78) (86.26) (109.91)

The calculated values of the factors fr and fc (for p = 0.08) are shown in Table I. As
is evident from this table, the factors fr, reflecting the effect of the fused midportion on the
total elongation of the coupler, are substantially larger than the factors fc, considering the
effect of the conical parts. This is due to the relatively high compliance of the fused
midportion. Table I shows also that, for sufficiently large deformations, the "actual"
(nonlinear) strains Br in the fused midportion, calculated for the given stress Cir by the formula
(17), are appreciably smaller than the "nominal" strains Bo = CidEo = p2/2a, predicted by
the linear theory.

From (21) and (22) we obtain:

(26)

This equation can be used to evaluate the parameter P, and then the axial force P, for the
given total elongation 111. The calculated forces P and the total strains 111/1, shown in Table
1, were obtained for the case I = 38.5 mm, lr = 11.5 mm, rr = 0.01 mm, and re = 0.125 mm.
As is evident from the calculated data, rather low total strains fil/Ilead to significantly higher
strains Br in the fused midportion. This is also due to the fact that the conical parts are
substantially more rigid than the fused midportion and therefore add much less to the total
elongation ofthe coupler. Let, for instance, the total displacement of the above coupler be
fil = 0.0513 mm, so that the total strain is 111/1 = 0.1332%. As follows from Table I, in this
case, the strain in the fused midportion is Br = 0.33%, and its elongation is filr = Brlr = 0.0380
mm. Hence, the conical parts, whose total length is 27.0 mm, i.e. by a factor of 2.35 greater
than the length of the fused midportion, are stretched by l11e = 0.0513-0.0380 = 0.0133
mm, which is only a little more than 25% of the total elongation. The stresses in the fused
portion of the coupler can be easily determined from the calculated CidEo values. If, for
instance, the total strain in the coupler is 0.02%, the strain in the fused midportion of
the coupler is about 0.054%, and the corresponding stress is Cir = 0.00054 x 7384 =
4.0 kgmm- 2•

If the nonlinear stress-strain relationship was not considered, then eqn (26) would
result in the following formula for the applied force:

The P values, calculated on the basis of this formula for the 111/1 values obtained in Table
I are shown in parentheses in the bottom line of this table. As evident from the calculated
data, the linear approach can result in a substantial underestimation of the force P, and,
hence, of the tensile stresses.

Free vibrations

Long fiber subjected to tension. From the standpoint of structural analysis, a long-and
thin fiber subjected to tension can be treated as a spring (or a thread). Then its vibrations
can be described by the equation:
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(27)

Here w = w(x, t) is the deflection function, P is the tensile force, m is the fiber's mass per
unit length, x is the longitudinal coordinate, and t is time. Equation (27) assumes that the
fiber is so long and its diameter is so small, that the flexural rigidity of the fiber need not
be considered. This equation simply states that the inertia forces must be equilibrated by
the elastic tensile force in the fiber.

We present the function w in the form of a series:

cD inx
w = L Oi(t) sin -I '

;=1

(28)

where I is the length of the fiber, and 0i(t) is the principal coordinate of the ith mode of
vibrations. Substituting (28) into (27), we obtain:

~';+m?Oi = 0, i = 1,2, ...

Here

(29)

is the vibration frequency of the ith mode, (J is the tensile stress in the fiber, and p is the
density of the material (typically, p = 2.2 g cm- 3). Substituting (1) into (29), we have:

(30)

where

(31)

is the "nominal" (linear) frequency, and the factor

(32)

considers the effect of the nonlinear stress-strain relationship. If, for instance, the actual
strain in the fiber is e = 0.05, then the formula (32) yields: 113 = 1.072. Thus, consideration
ofthe nonlinear stress-strain relationship increased the vibration frequencies by about 7%.

Vibration frequency of a lightwave coupler. The total energy of the free vibrations of
the coupler structure (Fig. 2) is due to its kinetic energy

and the strain energy

1 e (OW)2
T = "2 Jo m(x) 8i dx

(I (OW)2 1 (I (02
W)2

V = !p Jo ox dX+"2 Jo EI(x) ox2 dx.

(33)

(34)

Here w = w(x, t) are the lateral deflections of the coupler, m(x) = n(y/g)r2(x) is the mass
of the coupler per unit length, y/g = 2.245 x 10- 10 kg s2 mm-4 is the density of the coupler's
$AS 3O,7-F
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material, y is its specific weight, g is the acceleration due to gravity, and l(x) = (ni4)r4 (x)
is the moment of inertia of the cross-sectional area. The formula (34) reflects an assumption
that the vibration amplitudes are small and therefore the additional strain energy due to
the axial deformations caused by lateral deflections need not be considered.

Actual lightwave couplers are characterized by very large lengths compared to their
lateral dimensions (even at the end cross-sections), and therefore the actual boundary
conditions at the ends have a small effect on the vibrations. Indeed, consider, for the sake
of simplicity, a uniform beam clamped at the ends and subjected to a tensile force P. The
vibrations of this beam can be described by the equation

Seeking the deflection function w(x, t) in the form of an expansion

00

w(x, t) = L X;(x) sin Wit,
;=1

(35)

(36)

where W; is the frequency ofthe ith mode, we find that the functions X;(x) can be determined
from the equation

EIX{V(x)-PX!,(x)-mwlX;(x) = o.

This equation has the following solution:

where

and

4EI 2
&; = mw;.

Note that

After substituting (38) into the boundary conditions

X;(O) = X;(l) = 0, X;(O) = X;(l) = 0

(37)

(38)

(39)

(40)

(41)

and considering (41), we obtain the following equation for the vibration frequencies Wi:

(42)

Here u; = y;l, V; = b;l, and the parameters y; and b; are expressed through the frequencies
W; by the formulae (39) and (40). If the &/ value is small compared to unity, i.e. if the actual
tensile force P is significantly larger than the value
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Ps =2Wi~'

955

(43)

then the formulae (39) yield: 'Vi = 0, hi = JPjEI, and eqn (42) reduces to the frequency
equation for a simply-supported bar:

sin Vi = O.

In this case the vibration modes can be presented as

)
. inx

X/ex = sm -1-

and eqn (37) results in the following formula for the frequency:

With this formula, the expression (43) can be written as

(44)

(45)

(46)

(47)

Assuming in the example, considered above, ro = (rc+rf)/2 = 0.0675 mm, E = Eo, and
i = I, we obtain: Ps = 0.00387 fg. Hence, as one can see from Table I, the coupler structure
in this example can be considered simply supported at the ends even for rather low values
of the force P.

Let us assess now the second (bending) term in (34) compared to the first term. Let
us assume again, for the sake of simplicity, that the flexural rigidity EI is constant and is
equal to (nj4)Eorg. Then, presenting the deflection function w in the form (36), where the
vibration mode function X/ex) is expressed by (45), we obtain:

PI 00 (. )2( 3E 4)m '2 n ro 2' 2
V = 4 /~1 I 1+1 2 PI2 AI sm Wit,

where Ai is the amplitude of the ith mode. As follows from this formula, the bending term
contributes very little to the strain energy, if the tensile force P is significantly larger than
the value

Comparing this formula with (47), we conclude that if the condition P» Ps is fulfilled, the
condition P » Ph is fulfilled as well, i.e. if the tensile force P is large enough, so that the
coupler can be considered simply supported at it ends, it is also sufficiently large for
neglecting the bending term in the expression for the strain energy. Hence, for a large
enough tensile force (P» Ps), the strain energy can be assessed by the simplified formula:

i l (OW)2
V = !p Jo ox dx.

For the lowest vibration mode (i = I), the formulae (33) and (48) yield

(48)
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=.r A 2ro 2
/

3C COS
2 rot,

g

11:
2 P

V = 4 I A 2 sin2 rot,

where A is the amplitude of vibrations and the constant C is expressed as follows:

1 (re)2 (Ie 1. Ie) 1 (rr)2 [lr 1. Ie 1. Ie +lrJ+ - - - - - sm 211: - + - - - + - sm 211: - - - sm 211: --
2 I I 211: I 4 I I 211: I 211: I'

The condition Tmax = Vmax results in the following simple formula for the vibration fre
quency:

(49)

From this formula we conclude that the initial strain resulting in the desired (or required)
lowest vibration frequency ro, causes the following stress in the fused midportion of the
coupler:

(50)

Let the highest expected excitation frequency be, say, 2000 Hz. With the factor of
safety equal to two, the required natural frequency of the coupler vibration is 4000 Hz.
Then, for the coupler, examined earlier, we obtain: C = 16.866 X 10- 8

, O'r = 67.8 kg mm- 2
,

Br = 0.894%. Thus, the silica material should be sufficiently strong to withstand long-term
strains higher than 0.9%. Note that the formula (50) can be used also for the prediction of
the initial tensile force, stress and strain from the measured frequency of vibrations.

The tensile force P, causing this stress, is P = 21.3 g. If the nonlinear stress-strain
relationship were not considered, then, according to the Table 1data, the tensile force would
be about P = 20.7 g. Since, as follows from (49), the vibration frequency is proportional to
the square root of the tensile force, the linear frequency would be lower than the nonlinear
frequency only by a factor of 0.986. Hence, in this case the effect of the nonlinear stress
strain relationship need not be taken into account.

Bending

Basic equations. The position of the centroid (neutral axis) of an optical fiber subjected
to bending can be determined from the equation (Fig. 3) :
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Fig. 3. Cross-section of a fiber subjected to bending: Z., deviation of the neutral axis from the
geometrical center of the fiber cross-section.

1EZ 1 dA = 0,
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(51)

where E is Young's modulus of the material, and A is the cross-sectional area. An element
of this area can be evaluated by the formula:

(52)

Since the strain e is related to the radius R of curvature of the cross-section as

the formula (6) for Young's modulus can be written in the case of tension in the form:

(53)

In the analysis which follows we assume that the effect of the nonlinear stress-strain
relationship on the radius R ofthe fiber bend is small compared to its effect on the maximum
stress and need not be taken into account. Then, substituting (52) and (53) into (51), we
obtain

(54)

Introduce a new variable e, so that

(55)

Then eqn (54) yields:
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( a) f"/2 a f"/2
- Zc 1- -R ZC cos2 e de + -R r~ sin2 e cos2 e de

-,,/2 -,,/2

(
a )f"/2+ro 1-2 Ii. Zc -,,/2 sin e cos2 e de = o.

The first two integrals in this equation are equal to n12, and n/8, respectively, and the third
integral is zero. Then we obtain the following quadratic equation for the deviation Zc of the
neutral axis from the geometrical center of the fiber cross-section:

2 R r~
Zc - -; Zc + 4 = o.

This equation has the following solution:

where

ro
Bo =-

R

(56)

(57)

is the "nominal" (linear) strain. When this strain is very small, so that the aBo value is
substantially smaller than unity, the formula (56) can be simplified as follows:

(58)

and, with a = 6, yields:

(59)

Hence, the relative shift in the centroid due to the nonlinear stress-strain relationship is
greater by a factor of 1.5 than the nominal bending strain.

Let us show that in an approximate analysis the flexural rigidity of the fiber cross
section can be indeed assumed constant, i.e. calculated without considering the nonlinear
stress-strain relationship. The flexural rigidity of such a cross-section can be expressed by
the integral

The first two integrals in this expression are equal to n/8 and n12, respectively, and the last
two integrals are zero. Then we have:
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where

is the "nominal" (low strain) flexural rigidity, and the factor

959

(60)

(61)

considers the effect of the stress-strain nonlinearity. Substituting the Zc value from (56) into
this equation, we obtain:

(62)

When the nominal strain is very small, so that the lX28~ value is considerably smaller than
unity, the formula (62), with lX = 6, can be simplified as follows:

(63)

Comparing (63) with (59), we conclude that the deviation of the "actual" (finite strain)
flexural rigidity from its "nominal" (low strain) value is proportional to the "nominal"
(linear) strain squared, while the deviation of the centroid (the neutral axis) from the
geometrical center-line of the fiber cross-section is proportional to the first power of the
"nominal" strain. Therefore, in an approximate analysis, the flexural rigidity of the fiber
cross-section can be simply assumed strain independent. This means that the geometry of
the fiber bend, and, particularly, the radii ofcurvature, can be assessed without taking into
consideration the nonlinear behavior of the material.

We would like to point out that the formulae (56) and (62) indicate that the basic
equations (1) and (2), obtained experimentally for strains not exceeding 5%, cannot be
used in the case of very high strains. Indeed, these formulae do not make sense for (lX80)2

values, larger than unity. This corresponds to the nominal strains 80 exceeding ~ = 16.7%.
Although such high strains cannot occur in regular silica fibers, high strength fibers can
withstand even higher strains.

The maximum tensile and the maximum compressive strains in a glass fiber subjected to
bending can be determined, with consideration of the shift in the centroid due to the
nonlinear stress-strain relationship, as follows:

(64)

Then the corresponding maximum stresses can be evaluated, using the relationships (1) and
(2), by the formulae:
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Table 2. Stresses and strains in optical fibers subjected to two-point bending with consideration of the nonlinear
stress-strain relationship

80' % 2 3 4 5 6 7 8

8 t ,D/O 0.985 1.940 2.864 3.7564 4.6162 5.4413 6.2294 6.997
(f,IEo 0.01014 0.02053 0.03110 0.04180 0.05255 0.06330 0.07393 0.08437
Be' 010 1.015 2.060 3.136 4.2436 5.3838 6.5587 7.7707 9.023
(felEo 0.00984 0.01933 0.02841 0.03703 0.04514 0.05268 0.05959 0.06580
(ft"/Eo 0.01030 0.02120 0.03270 0.04480 0.05750 0.07080 0.08470 0.09920
(f~/Eo 0.00970 0.01880 0.02730 0.03520 0.04250 0.04920 0.0553 0.0608
D,mm 14.98 7.49 4.99 3.74 3.00 2.50 2.14 1.87

Stresses calculated in accordance with these formulae are presented in Table 2. In this table,
Eo is the "nominal" (linear) strain, Et is the maximum tensile strain, Ee is the maximum
compressive strain, UtiEo and uelEo are the ratios of the maximum tensile and the maximum
compressive stresses to the "nominal" (low strain) Young's modulus, and u?IEo and
ugIEo are similar ratios calculated by the above formulae, assuming Et = Ee = Eo, that is
without considering the effect of the nonlinear stress-strain relationship.

Two-point bending. The obtained results can be particularly helpful for the evaluation
of the maximum stresses in optical fibers subjected to large deformations during two-point
bending. This technique (Murgatroyd, 1964; France et al., 1980; Cowap and Brown, 1984;
Mathewson et al., 1986) involves constraining a bent loop of fiber between two faceplates
which are then brought together until the desirable gap is achieved, or until the fiber breaks.
A modification of this technique involves inserting a V-shaped bend of a fiber into a glass
tube of the given inner diameter. The minimum radius R of curvature at the midpoint of
the fiber bend is related to the distance D between the fiber axes in the region beyond the
bend as follows:

R =! I/j2 D =0.4173D.
22E(I/j2)-K(I/j2)

(65)

(66)

Here K(P) and E(P) are complete elliptic integrals of the first and the second kind, respec
tively. The relationship (65) can be easily obtained as a special case of the well-known
solution to the "elastica problem" [see, for instance, Timoshenko and Gere (1961) and
Suhir (1991)], and results in the following formula for the "nominal" strain:

~ ro ~

Eo = R = 2.3964 D ~ 2.4 D'

The calculated D values are shown for a 125 J1.m glass fiber (ro = 0.0625 mm) in Table
2, and the ratios of the induced stresses to "nominal" (low strain) Young's modulus are
plotted in Fig. 4. As evident from these data, the nonlinear stress-strain relationship can
have an appreciable effect on the maximum stresses, especially in the region of relatively
high bending strains (small tube diameters). Note that an approach which considers the
effect ofthe nonlinear stress-strain relationship on the effective Young's modulus, but does
not account for this effect on the shift in the centroid of the fiber cross-section, is inconsistent,
and results in an overestimation of the maximum tensile stresses and in an underestimation
of the maximum compressive stresses.

CONCLUSION

The nonlinear stress-strain relationship in silica materials can have a significant effect
on the mechanical behavior of optical fibers experiencing extensive static or dynamic



Behavior of optical glass fibers

Distance between faceplates (tube diameter), D(mm)

Fig. 4. Maximum stress in a fiber subjected to two-point bending versus distance between faceplates
(tube diameter) : u" maximum tensile stress; uc ' maximum compressive stress; u~, maximum tensile
stress without considering the shift in the centroid; u~, maximum compressive stress without

considering the shift in the centroid, Eo, nominal (low strain) Young's modulus.
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loading. The future experimental work should include evaluation of the stress-strain
relationship, both in tension and compression, for large strains and for high strength fibers.
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